Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance
نویسندگان
چکیده
The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.
منابع مشابه
Effect of Substrate Morphology on Growth and Field Emission Properties of Carbon Nanotube Films
Carbon nanotube (CNT) films were grown by microwave plasma-enhanced chemical vapor deposition process on four types of Si substrates: (i) mirror polished, (ii) catalyst patterned, (iii) mechanically polished having pits of varying size and shape, and (iv) electrochemically etched. Iron thin film was used as catalytic material and acetylene and ammonia as the precursors. Morphological and struct...
متن کاملEnhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates
Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...
متن کاملVacuum Brazing of Zirconium-Based Alloy and 321 Stainless Steel Using Titanium Based Filler Metal
Both Zirconium-based alloys and 321stainless steel are widely used as engineering alloys due to their good mechanical properties. Conventional fusion welding techniques for Zr alloys and stainless steel are not feasible due to the formation of brittle intermetallic compounds such as (Zr3Fe, ZrFe2 and Zr2Fe) and corrosion cracking. Brazing is one of the most wide...
متن کاملNano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy
ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...
متن کاملNano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy
ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2015